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Abstract

Techniques for learning reactive robot behaviors have been an active field of research in robotics for
many years. In this paper the method for representing behaviors is based on association rules. Learning
the association rules is accomplished by recording training data for a manually programmed controller.
The data is then used to generate a set of association rules that replaces the manually programmed
controller, and manages to reproduce the demonstrated behavior. Reactive behaviors have obvious
limitations, caused by the reactivity itself. Sequences of behaviors are hard to model, unless the switch
between behaviors is synchronous with changes in the sensor data. Two ways to get around this lim-
itation are discussed, and the method is demonstrated with examples: one road sign problem with a
mix of two wall-following behaviors, and a more complex sequenced light-avoiding cockroach behav-
ior. The results show that association rules are a powerful and practical way to implement rule-based
controllers for reactive and semi-reactive robots.

Introduction

The work reported in this paper addresses the well-
studied problem of making robots learn reactive be-
haviors from demonstrations. In general, the process
is divided into three steps: 1. The robot is controlled,
either by remote control by a human operator, or by a
manually coded software controller to perform a cer-
tain task. The sensor data S(t) at time ¢ is recorded
along with the commanded response signal R(t). 2.
The recorded data is used in a modeling, where a con-
trol law B : S(t) — R(¢) is created. 3. The controller
B is implemented in the robot, which hopefully man-
ages to perform the demonstrated task autonomously.
The various approaches to this general setup can be
distinguished by the machine-learning technique cho-
sen to arrive at the control law.

Reinforcement learning (RL) is a commonly used
methodology (Lin (1991); Carreras et al. (2002)),
which maps the state of the environment to an ac-
tion that in turn maximizes the accumulated future
rewards. The main advantage of RL is that it does not
require all data to be available at the same time, as do
most other machine-learning techniques. As a result,
RL is suitable for online robot learning. The main
disadvantages are long learning time, and problems
with continuous variables (Carreras et al. (2002)).
Artificial neural nets that have also been applied to

the problem of finding reactive behaviors from data.
Martin and Nehmzow (1995) use simple single layer
perceptrons to represent behaviors for obstacle avoid-
ance, wall following, cleaning, and route learning.
Fuzzy rule bases have also been widely chosen to rep-
resent learned reactive behaviors. Ward et al. (2000)
uses training data for a remote controlled robot to
generate a fuzzy rule base capable of reproducing
behaviors, such as wall following, corridor follow-
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onary techniques have been
combined with fuzzy rule bases to find optimal rules,
e.g. in Hoffmann and Pfister (1997). In our approach,
B is represented by a rule base with association rules.
Association rules (Agrawal et al. (1993)) have been
successfully used for data mining, where the goal is to
explore complex databases to find patterns that might
prove useful for various purposes. However, associ-
ation rules have so far not been extensively used in
robotics. One advantage with this machine-learning
technique is the handling of uneven distribution of
training examples. Most other techniques have a ten-
dency to focus on the most common examples, and
learn less from the scarce examples. For example,
this is a well known problem when using neural nets
for the learning process (Ward et al. (2000)).
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The concept of association rules and how they are
used to represent reactive behaviors is introduced in
Section 2. The general method for building a con-



troller is described in Section 3. Results of practi-
cal experiments are presented in Section 4, including
a road-sign-following behavior and a more complex
cockroach-hide behavior. Section 5 concludes the pa-
per with a summary and conclusions.

2 Behaviors as Association Rules

Association rules are a way of expressing dependen-
cies between items in databases. Association rules
have the general form X = Y, where both X and
Y are sets of items. Given transactions 7' € D,
where D is a database and each transaction is a set of
items, the rule X = Y expresses a statistical correla-
tion between X and Y. The rules can be constructed
according to different quality measures for different
purposes. The coverage of the rule X = Y is de-
fined as

coverage(X = Y) = cover(X),

where cover(X) is defined as the number of transac-
tions containing all items in X, divided by the size
of the database. l.e., the coverage is the fraction of
transactions in the database that contain all items in
the left-hand side X of the rule. The support mea-
sures the fraction of transactions that contain all items
inboth X and Y:

support(X = Y) = cover(X UY).

For some applications, the statistical correctness of
the correlation is critical. The important measure for
this quality is called strength. The strength (some-
times also called confidence) of an association rule
X =Y is the proportion of the transactions that con-
tain X that also contain Y. It can be computed as

support(X =Y)
coverage(X = Y)’

strength(X =Y) =

Coverage and support are of interest when esti-
mating the significance of the strength, since they
quantify on how many observations of X and Y the
computation of strength is based. For more informa-
tion about these and related measures see Hellstrom
(2003a).

2.1 Behavior Representation

The robotics framework in this paper is basically re-
active, and each behavior is defined by a control law
B : S(t) — R(t), where S is the vector of stimuli
available at time ¢ (a purely reactive scheme involves

only stimuli from the current time ¢,) and R(t) is the
response vector issued at time t. B is implemented
as a rule base of rules of the form S = R. Sis a
conjunction of boolean expressions s; = v;, where s;
is a discretized sensor variable or derived expressions
thereof and v; is an integer value. R has the form
y = a, where y is a discretized response variable and
a is an integer value. With this notation, a rule has the
general form

$i=v;ANsj =vj.. Nsp=vp=>y=a (1)

In our experiment we have a Khepera robot with
8 infrared sensors I Ry, IRy, .., I R7 to measure the
distance to the closest obstacle. Each sensor deliv-
ers an integer between O (corresponding to a distance
larger than the sensor range which is about 4 cm.)
and 1023 (corresponding to a distance less than about
1 cm.). For experiment 1, each sensor readout I R; is
split into 3 ranges 0, 1, 2. For experiment 2, 4 ranges
are used and represented by a discrete variable ir; ac-
cording to

0 if 0<IR; <100 (long distance)
1if 100 < IR; <600 (medium dist.)

ir; = 2if 600 < IR; <900 (shortdist.)
3if 900 < IR; <1023 (very short
distance)
(2)

The robot has two wheels with independent motor
control, so both robot speed and turning radius are
controlled by setting the left and right speed values v;
and v,. v; and v, can be set to integer values in the
range [-127,127]. The response ¥ in our experiments
is a coded combination of v; and v,- according to:

v v, Action
0 stop
-5 anti clockwise on the spot
anti clockwise around left wheel
soft anti clockwise
straight ahead
soft clockwise
clockwise around right wheel
—5 clockwise on the spot
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As an example, a rule for a left-wall-following be-
havior may look like this:

Z"f'l :0/\iT2:1=>y:1.
The rule should be interpreted as follows:

if 0 < TRy <100 A 100 < IR < 600 then

vy =2and v, = 5.



In plain English this reads as:

if I R; senses a long distance and I R, senses a

medium distance, then turn soft anti clockwise.

3 Building a Controller

The rule base to control the robot is generated from
data recorded from a manually programmed con-
troller, demonstrating the required behavior. In this
way we obtain a set of stimuli/response pairs that
can be used to automatically generate a rule base.
This rule base then replaces the controller, and hope-
fully produces the same behavior as the manually pro-
grammed controller. Each sample has the form

iT(),iTl,...,iT7,y (4)

where each ¢r; is an infrared sensor readout and y
is the commanded velocity signals from the manu-
ally programmed controller. The rules we want to
find have the form defined in (1), where each term
is an attribute-value pair of the form s = v, where
s is a discretized sensor variable and v is an inte-
ger value. Algorithms that efficiently search large
databases for association rules have been previously
developed (e.g. Agrawal et al. (1993)).

The generated rules are implemented as a con-
troller in the robot. During execution, the sensed data
is matched with the left-hand side of the rules. A rule,
for which all terms s; = v; in the left-hand side match
the sensed data, is said to fire. Three cases can oc-
cur: 1. Exactly one rule fires. The right-hand side
y = a of the rule is used to control the robot. 2.
More than one rule fires. The one with the highest
strength is chosen. 3. No rule fires. The task of find-
ing a rule for sensor data that lies outside all defined
rules can be viewed as a classification problem: to
which rule does the sample belong? We have suc-
cessfully designed and implemented a method called
k-nearest rules, based on the classification technique
k-nearest neighbors (kNN). For more information, re-
fer to Hellstrom (2003a).

4 Experiments

We present results from two experiments demonstrat-
ing the power of using association rules to model re-
active behaviors in the way described in the previous
section. The experiments also show how non-reactive
behaviors can be tweaked into the reactive framework
by pre-processing the sensor data.

4.1 Experiment 1

This experiment deals with the Road sign problem
(Lindker and Jacobsson (2001)), in which the robot
has to act on a road sign it had passed earlier. It is
impossible to achieve this in a purely reactive manner,
since the robot has to choose between a left and a
right turn, depending on past stimuli. The situation is
illustrated in Figure 1.

Our approach is to let the robot act on preprocessed
sensor data with a perceptual decay (Werger (1999)).
The perception of a road sign remains even after the
stimuli have disappeared and slowly fades out with
time. In this way the behavior can still be purely re-
active, since the memory is hidden in the robot’s per-
ception. This is indeed a simplification of the original
road sign problem, but it serves our purpose well. The
purpose of the experiment is to see how a complex
behavior can be modeled by the rule base of auto-
matically generated association rules. The idea with
perceptual decay is illustrated in Figure 2. The orig-
inal stimuli as a function of time are shown in the
lowermost pane. The perceptual decay in the middle
pane shows how the perception remains and gradu-
ally decays after the original stimuli has disappeared.
The uppermost pane shows another processing of the
stimuli used in experiment 2.

The demonstrated behavior is manually coded as
a switching between two controllers, a left-wall fol-
lower and a right-wall follower. The switching occurs
when the robot encounters a road sign, describing the
recommended way to go in the upcoming junction.
The road signs are constructed of small bulbs attached
to the walls of the robot’s maze. The bulbs on the wall
are sensed by the ambient light sensors on the Khep-
erarobot. The sensors for left and right bulb detection
are denoted AL; and AL, respectively. To enable the
robot to act on a road sign that appears and disap-
pears before a junction, a virtual road sign sensor RS
is defined as:

2if  decay(AL;) > decay(AL,)
RS = .
0 otherwise

NG

The decay function computes a perceptual decay
of the sensed road sign signal, and serves to make the
robot gradually forget about road signs as time passes
after the road sign has disappeared out of the robot’s
sight. The R.S sensor is a binary signal with the value
2 if the last seen road sign was a left sign, and O other-
wise. The perceptual decay is a slight side step from
a pure reactive design, but is a neat way of stretching
the borders of the reactive paradigm when the robot’s
action has to depend on “old” sensor data. In our ex-
ample, the R.S signal is added to the 8 infrared sen-



sors 170,471, .., ¢77 as an additional input, and serves
as a switch between the two wall-followers in the
learning mode. The manually programmed controller
performs a left/right wall-following task as described
by the pseudo code below:

if RS =2
left-wall follower

else (6)
right-wall follower

end

where left-wall follower and right-wall follower are
simple rule-based controllers described in Hellstrom
(2003b). In step 2 of the basic learning process (see
Section 1,) RS is made available as an extra input in
the search for association rules, and should then (au-
tomatically) be added as a high-level condition that
groups the generated rules in two categories: left-wall
following and right-wall following. Of course, rules
common to both behaviors may be unaffected by the
value of the RS input.

The controller is run with a cycle time of 0.1 sec-
onds for 100 seconds. This results in 1000 samples of
training data, each sample consisting of 8 discretized
sensor read-outs irg_7, RS and one discretized ac-
tion y. The sensor data is discretized in 3 ranges, and
the actions in 8 categories as described in (3) (the stop
action is never used in this example.) The training
data is then used to automatically generate associa-
tion rules, which in turn are used to construct a robot
controller.

Table 1 shows performance for a number of differ-
ent controllers with different numbers of rules. The
number of rules is set by giving a lower limit to the
strength value. Each controller is evaluated on one
row in the table. The rules are applied to two data
sets, the 1000 samples big training data set, which
was used to generate the rules, and a test data set sep-
arately generated. The ey, and e, are the fractions of
samples that give incorrect action when compared to
the manually programmed controller. By demanding
a strength value equal to 1.0, 31 rules are selected.
The column labeled Orule% is the fraction of sam-
ples, for which no matching rule can be found in the
controller’s database. The 31 rule controller leaves
9.6 % of the samples not matched by any rule. The
1-nearest rule developed in Hellstrom (2003a) han-
dles this reasonably well with 5.0 % incorrect actions
on the test data set. The column labeled 1rule% is
the fraction of samples covered by exactly one rule.
The rightmost 3 columns are the fractions of samples
covered by 2, 3 and more than 3 rules respectively. In
23.9 % of the cases, two or more rules fire at the same

time. This is resolved by majority voting among the
rules that fire. It is clear from the table that the best
controller is achieved by a controller with the 43 rules
with strength> 0.95. These rules give minimum er-
ror on both training and test data sets. Furthermore,
the number of cases where no rule fires is reduced to
zero when these 43 rules are used.

A comparison between the training set error ey,
and test set error e; exhibits a difference that would
normally be diagnosed as overfitting. This concept
is largely ignored in the association rule commu-
nity (Freitas (2000)), while it is very common in
other areas of machine learning. However, acting on
rules with very low strength or suppori corresponds
to adding more nodes to a neural net, or adding
higher-degree terms to a polynomial model. Simple
techniques, such as computing performance for both
training data and previously unseen test data should
therefore be a standard procedure when using asso-
ciation rules for prediction or induction, in particular
with noisy data, such as robot applications.

Table 2 lists a few of the generated rules and shows
that not all rules responsible for turning contain the
RS variable as condition on the left-hand side of
the rule. However, this is not necessarily incorrect,
since turning may occur not only when performing a
turn in a junction, but also for wall-avoidance, which
could be handled uniformly, regardless of the road
sign condition. When the rules are installed as a con-
troller on a real Khepera robot, the robot success-
fully manages to switch between left and right-wall
following depending on road marks placed along the
route in the maze. For a more detailed analysis of
the road sign experiment, see Hellstrom (2003a) and
Hellstrom (2003b).

4.2 Experiment 2

This experiment aims at developing a rule base capa-
ble of mimicking the behavior of an imagined light-
avoiding cockroach. A program performing the fol-
lowing robot behaviors is first developed (refer to Fig-
ure 3):

o If the light is switched off, explore the surround-
ings while avoiding obstacles

o If the light is switched on, perform the following
sequence: 1. Turn around 180 degrees. 2. Move
in a straight line to a wall. 3. Follow the wall
until a hiding place is found. 4. Turn around and
stop until the light is switched off.

This is a fairly challenging task even for a human
robot programmer. In reality it took many days to



construct a program able to successfully perform all
the described steps with the Khepera robot. It is
clear that a pure reactive approach is not enough to
achieve step 1 above. For this reason pre-processing
of the ambient light sensor is introduced. The lay-
out of this "habituation” function is illustrated in the
topmost pane of Figure 2. The initial response fol-
lows the actual stimuli (the ambient light sensor) but
falls off after a fixed time. In this way it is possible
to model a time limited response in a semi-reactive
fashion. The actual behavior is purely reactive but
the pre-processing is not. It should be noted that the
time for the response to fall off is tailored to match
the time it takes for the robot to turn 180 degrees,
i.e. to complete sub-behavior 1 above. This is neces-
sary to make a reactive modelling possible, but may
at first look like cheating. However, both animals and
humans exhibit such tailored perception for various
behavioral support. And after all, already the choice
of sensors for a robot dictates which behaviors are
feasible for the robot. The rest of the behavior de-
scribed above can be programmed in a purely reactive
fashion, using the infrared sensors to identify a hiding
place and to turn around. The programmed controller
is run with a cycle time of 0.1 seconds for 1000 sec-
onds. This results in 10000 samples of training data.
The data is then used to generate a rule base, which
manages to reproduce the entire cockroach-like be-
havior using 100 association rules. In particular, the
method manages to reproduce the time-limited turn
in step 1 by including the pre-processed ambient-light
sensor in the rules controlling the rotation.

S Summary

We have demonstrated how association rules can be
used by intelligent robot controllers for learning re-
active and semi reactive behaviors. Two techniques
to extend the reactive paradigm in this context have
been presented. One road-sign-following task uses
perceptual decay to achieve a memory of the type of
the latest road sign. Another pre-processing of sen-
sor data introduces habituation and makes it possible
to implement a sequenced light-avoiding cockroach
behavior.
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Table 1: Performance for road sign controller. Majority voting is used when more than one rule fires. The error
rate is much higher than for the simple wall following task. The difference between the training error e, and test

error e is an indication of overfitting.

Strength | #rules | e,,% | e.c% | Orule% | 1rule% | 2rules% | 3rules% | >3rules%
1.00 31 1.0 5.0 9.6 66.5 18.9 3.2 1.8
0.98 33 0.9 4.9 6.5 66.8 20.7 4.0 1.9
0.95 43 0.5 2.4 0.0 26.8 46.9 10.2 16.1
0.90 56 3.1 4.7 0.0 7.7 44.4 21.1 26.8
0.85 66 4.7 6.0 0.0 7.1 26.8 31.1 35.0
0.80 76 4.2 6.2 0.0 6.2 23.2 2.8 67.8
0.75 87 7.1 9.9 0.0 5.9 0.6 9.1 84.4
0.70 97 6.0 9.1 0.0 5.9 0.3 6.4 87.4
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Figure 1: The road sign problem, adapted from Linaker and Jacobsson (2001), in which the robot has to decide
on a left or right turn in each junction, depending on the past stimulus from the road signs. Our approach is to
add a perceptual decay to the road sign perception. The robot switches between a left- and right-wall following
behavior to perform the turnings in the crossings.



Table 2: Part of generated rule base for road sign controller. The binary RS variable controls left- and right-wall
following.

Rule No. | Coverage | Support | Strength
irt=2ANirg =2=y=-3 1 4 4 1.00
iro=1Airr=2=y=-3 2 4 4 1.00
irr=2ARS=2=y=-3 3 6 6 1.00
iro=1ANire=1ANire =1=y=-3 4 3 3 1.00
irr=1ANRS=2=y=-3 5 67 67 1.00
iro =2Air3=0=y=-3 6 2 2 1.00
iro=1ANwr¢e =2ANirr=1=y=3 7 2 2 1.00
ira=2ANire =1=>y=23 8 7 7 1.00
irg =2ANirr=1=y=3 9 2 2 1.00
iro=1ANira=1=y=3 10 26 26 1.00
irm=1Airs =2=y=23 11 4 4 1.00
iro=1ANirs =2=y=3 12 2 2 1.00
irs=2ARS=0=>y=3 13 25 25 1.00
irs=2ARS=0=y=3 14 32 32 1.00
iro=2Nir1 =0ANRS=2=y=0 15 94 94 1.00
ira=0Nirs =2ANRS=0=y=0 16 148 148 1.00
irr=2ARS=0=y=-1 17 8 8 1.00
irr=2ANirg =0=y=-1 18 6 6 1.00
iro=1ANirs =1Nire =1=y=—1 19 3 3 1.00
iro=1ANir¢e=1ARS=0=>y=-1 20 3 3 1.00
iro=1ANir7=1ANRS=0=>y=-1 21 7 7 1.00
iro=2ARS=0=>y=-1 22 13 13 1.00
irs =0Airs =1Nire =0ANRS=0=y=-1 23 116 116 1.00
ira=0Nirs =LARS=0=y=—1 24 142 142 1.00
irar=1ANRS=2=y=1 25 13 13 1.00
irt=0Nira =2ARS=2=y=1 26 101 101 1.00




Perceptual decay = Habituation

Stimuli

Time

Figure 2: Two ways of introducing non reactivity by pre-processing of sensor data. The perceptual decay enables
extended response to a stimulus. The habituation enables a sequence of two behaviors as a response to a stimulus.
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Figure 3: A robot emulating a cockroach’s light-avoiding behavior. Between 1. and 2. the light is off and the robot
moves around randomly, while avoiding obstacles. At 2 the light is switched on and the robot turrns 180 degrees,
moves until it hits a wall, which it follows until it reaches a hiding place, where it turns around and stops.



